

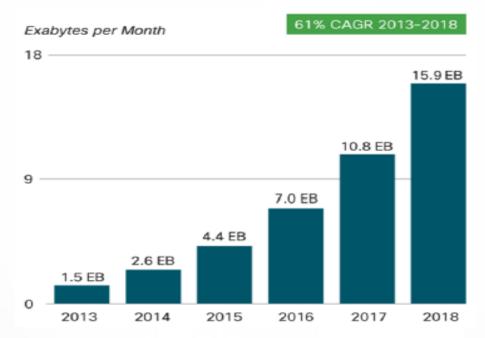
FUTURE WIRELESS TECHNOLOGY FORUM

Date: 29 May 2014

Francois Fourie

Objectives

This session has the following objectives:


- To provide E-Band frequency spectrum world norms
- Recommendations on spectrum fees for South Africa

Background and forecasts

- The diversity of communications is driving tremendous increase in data consumption (mobile as well as fixed)
 - Forecasted growth Smartphone to generate 2.7GB traffic / month by 2018 (average).

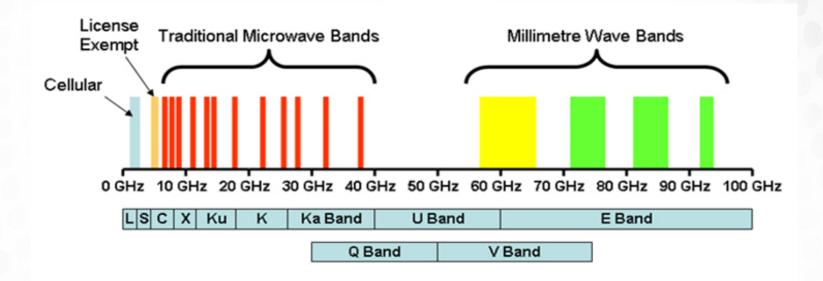
Forecasted growth – mobile data traffic

Wireless Transport Requirement **Driven by Application Demands**

- Mobile backhaul applications
 - Small cells to provide improved coverage & capacity
 - Distance: < 1km</p>
 - Capacity: 1Gbps or less (Typical 150Mbps)


- Long distance networks: Path lengths greater than 1km
 - Distance: > 1km
 - ◆ Capacity: 1 10Gbps

- Capacity of 1-10 Gbps


- Dual-entry Fiber PoP's
- Distance of 1-8 Km
- Availability ≥99.99%
- Capacity of 1-10 Gbps

- Fiber ring or remote PoP connection
- Distance of 5-100 Km
- Availability ≥99.999%
- Capacity of 2-10 Gbps

Technology Overview and Deployment

- Traditional: 2-40GHz = congested & throughput limited (Typical 360Mbps)
- mmWave (E-band): 71-76GHz & 81-86GHz = High data rates (1Gbps +)

Assessment of Modulation Techniques

Example-1

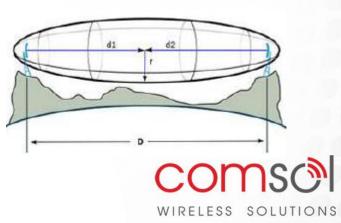
Requirement: 3.5km, 1Gbps

Fixed Distance = 3.52 KM; Data Rate = 1 Gbps; Average Rainfall = 22 mm/hr				
Modulation	Channel Size	Availability		
QPSK	1 Ghz	99.99 % (52 mins/year outage) (~3 times more)		
64 QAM	250 Mhz	99.97 % (157 mins/year outage)		

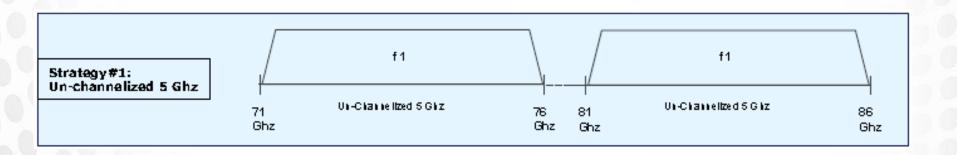
Example-2

Requirement: 1Gbps, 99.99% availability

Fixed Availability= 99.99%; Data Rate = 1 Gbps; Average Rainfall = 22 mm/hr			
Modulation Channel Size Distance			
QPSK	1 Ghz	3.52 KM (~ 32% more)	
64 QAM	250 Mhz	2.65 KM	

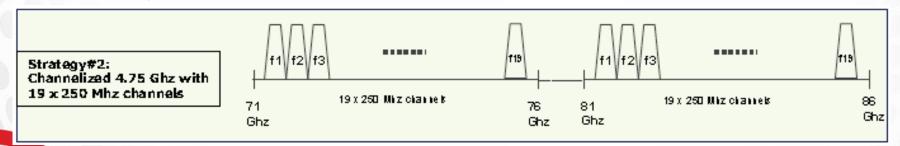

Conclusion: Wider channels with simpler modulations enable multi-gigabit capacities over longer distance and higher availability

Assessment of Interference


- E-band frequencies produce a typical 3dB beam width of:
 - 0.9° (12" antenna)
 - 0.4° (24" antenna)
- Freshnel Zone:
 - ♦ 5km 2.2m
 - ◆ 10km 3.1m
- E-band systems with extremely narrow beams and very short Fresnel distance mitigate interference risks, thus enabling high spatial reuse of the frequencies.

Worldwide Spectrum Allocation Strategies & Trends

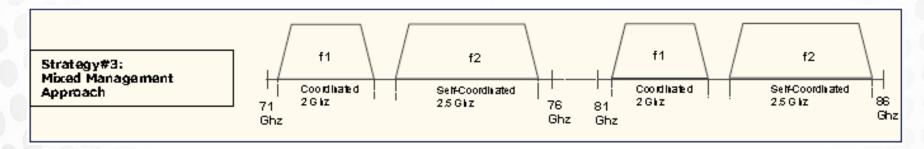
- Strategy #1 "Un-channelized Open"
 - Spectrum is open without any channelization User applies for national license. Self coordinated, first-come, first-served.
 - ◆ USA 2 x 5GHz, FDD
 - ◆ Australia 2 x 4.75GHz, FDD



Worldwide Spectrum Allocation Strategies & Trends

Strategy #2 – "Channelized Open"

Europe (42 CEPT administrations) as described by ECC/REC(05)07


- Full bands open (Self coordinated, first-come, first-served)
- ◆ 2 x 4.75GHz, FDD
- Allowing 19 x 250Mhz channels
- Adopted by: Belgium, Croatia, Denmark, Estonia, France, Germany, Greece, Iceland, Ireland, Luxembourg, Montenegro, Netherlands, Portugal, Romania and Spain

Worldwide Spectrum Allocation Strategies & Trends

- Strategy #3 "Un-channelized Regulated & Open"
 - United Kingdom (42 CEPT administrations) as described CC/REC(05)07
 - Mix management approach
 - 2 x 2.5GHz self-coordinated
 - 2 x 2GHz coordinated

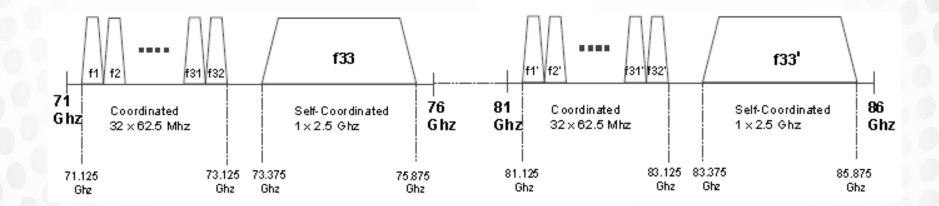
Cost considerations

- Unlicensed
 - No spectrum fees

Unlicensed	Czech Republic	74-76 and 84-86 Ghz	Free
	Russia	71-76 and 81-86 Ghz	Free
	Hong Kong	71 -76 and 81 -86 Ghz	Free
	Mexico	71-76 and 81-86 Ghz	Free

- Light License (Self Coordination)
 - Small annual or one-time fee
 - National license is required

Light License (self-	USA	71 -76 and 81 -86 Ghz	\$75 for ten years
coordinated)	UK	71.125-75.875GHz & 81.125-85.875GHz	\$100 per year
	Australia	71.125-75.875GHz & 81.125-85.875GHz	\$175 per year


- Traditional Point-to-Point
 - Higher frequency factor is applied cost kept low

Licensed (Traditional	Japan	Traditional PTP	\$10 per year
Point-to-Point Microwave	New Zealand	71.125-75.875GHz and 81.125-85.875GHz	\$170 per year
model)	Jordan	Traditional PTP	\$300 per year
	UAE	Traditional PTP	\$1 200 per year
	Ireland	Traditional PTP	\$1 500 per year

Recommendations

- Comply to ITU-R F.2006
- Channelized & Un-channelized
- Regulated 32 x 62.5MHz channels, FDD Low cost
- Open 1 x 2.5GHz, FDD Free

LATEST "STATE OF THE ART" EQUIPMENT

The first true hybrid wireless transport solution, combining advanced optical and millimeter wave technologies. It is a breakthrough product offering ultra-high capacity over long distances with carrier-grade availability, delivering the performance of fibre with the flexibility and economics of wireless.

Key Features

- Layer 1 transport with in-band or out-of band management
- Full duplex, 2 Gbps constant data rate in all weather conditions
- Up to 10 km point-to-point LOS with 99.999% availability*
- Compensates for tower twist & sway up to ± 3°
- Unlimited distance in daisy chain configuration
- 3R regeneration at every node without degradation over long distances
- Minimal linear space on towers
- Automated precision link alignment usually in 5 min
- All-outdoor design
- Lowest cost/bit/km
- Rapid ROI compared to fibre

THANK YOU

